ROLINE Switch industriel Gigabit, 10 ports (8x RJ45 + 2x SFP), PoE+, administré Smart

21.13.1137

Firmware Rev1.0 ou supérieur

Manuel de l'Utilisateur

Les informations contenues dans ce document sont susceptibles d'être modifiées sans préavis. Droit d'auteur © Tous droits réservés.

1. Introduction	3
1.1 Caractéristiques	4
1.2 Panneaux de produits	5
1.3 Indicateurs LED	6
1.4 Spécifications	6
2.Installation	8
2.1 Déballage	8
2.2 Précautions de sécurité	8
2.3 Montage sur rail DIN	9
2.4 Montage sur panneau	11
2.5 Application de la puissance	13
2.6 Sortie relais d'alarme	14
2.7 Bouton de réinitialisation	15
2.8 Établissement de connexions UTP	16
2.9 Établissement d'une connexion fibre	17
2.10 Établissement de connexions PoE PSE	19
2.11 Indications LED	20
2.12 Établir une connexion à la console	21
3. Gestion du Switch	22
3.1 Adresse IP et mot de passe	22
3.2 Configuration de l'adresse IP et du mot de passe via la console et telnet	22
3.3 Configuration de l'adresse IP via l'interface Web	23
3.4 Configuration pour la gestion SNMP	26
3.5 MIB SNMP	27
3.5.1 Interruptions SNMP	28
4. Applications en anneau redondantes	29
4.1 Technologie multi-anneaux automatique	29
4.2 Applications en anneau redondant avec protocole RSTP standard industriel	

Table des matières

1. Introduction

21.13.1137 est un commutateur Ethernet Gigabit géré industriel à 10 ports doté des ports de communication suivants :

- Huit ports cuivre Gigabit 10/100/1000 Mbps avec fonction PoE
- Deux emplacements SFP double vitesse pour 100Base-FX 1000Base-X
- Un port console RS-232

1.1 Caractéristiques

- Huit emplacements RJ-45 10/100/1 000 Mbps et deux emplacements SFP double vitesse
- Tous les ports en cuivre prennent en charge la négociation automatique et la détection automatique MDI/MDI-X.
- Tous les ports en cuivre sont équipés d'un PoE PSE conforme à la norme 802.3at.
- Deux emplacements SFP prennent en charge la double vitesse pour les émetteurs-récepteurs SFP 100BASE-FX et 1000BASE-X.
- Full wire speed forwarding
- Prend en charge le contrôle de flux 802.3x pour le duplex intégral et la contre-pression pour le semi-duplex
- Prend en charge SFP avec surveillance de diagnostic numérique (DDM)
- Fournit une fonction de redondance PoE PSE
- Fournit une fonction d'alarme de puissance optique (OPA) à fibre optique
- Fournit une fonction d'arrêt automatique du laser (ALS)
- Alimenté via une tension d'alimentation industrielle typique DC 12 V-30 V.
- Gestion:
 - HTTP/HTTPS/SSHv2/CLI telnet/CLI console/SNMP v1/v2c/v3/RMON
 - Client DHCP/DHCPv6, relais DHCP, client DNS, NTPv4
 - Prise en charge IPv6, Syslog système, téléchargement/téléchargement de configuration, téléchargement de logiciels
- Sécurité:
 - NAS, 802.1X, authentification basée sur MAC/Web/CLI
 - Liaison IP MAC, TACACS+, protection de source IP
- Couche 2 :
 - QoS, VLAN de sous-réseau privé/IP basé sur 802.1Q/MAC/basé sur un protocole, isolation des ports
 - Contrôle des tempêtes pour les paquets UC/MC/BC, configuration MAC statique
 - Surveillance IGMP v2/v3, surveillance MLD v1/v2, surveillance DHCP
 - Multiple Spanning Tree MSTP. RSTP, STP
- Technologie Auto Multi-Ring (AMR) :
 - Temps de réponse rapide en cas de basculement
 - Récupération automatique lorsque la panne est réparée
 - Prend en charge jusqu'à cinq anneaux redondants
 - Fonctionne avec le réseau RSTP
- Implémentation SNMP spécifique :
 - MIB privé pour lire le statut DDM
 - MIB privé pour démarrer à distance l'appareil via SNMP
 - MIB privée pour la mise à jour du firmware TFTP via SNMP
 - MIB privée pour configurer la fonction OPA
 - MIB privé pour configurer la fonction ALS
 - Pièges d'alarme OPA

1.2 Panneaux de produits

La figure suivante illustre le panneau avant et le panneau arrière du commutateur :

1.3 Indicateurs LED

LED	Fonction
PWR	État de l'alimentation
Gestion.	Statut de gestion
Port 1 ~ 8 LED VITESS	E Vitesse et statut PoE
Port $1 \sim 8$ LED LIEN	Etat du lien et de l'activité
SFP 9, 10 LED	Vitesse, lien et état d' activité du port SFP

1.4 Spécifications

Ports en cuivre 10/100/1000 (Port 1 ~ Port 8)

Conformité	IEEE 802.3 10Base-T, IEEE 802.3u 100Base-TX, IEEE 802.3u 1000Base-T
Connecteurs	Prises RJ-45 blindées
Attributions des broches	Détection automatique MDI/MDI-X
Configuration	Auto-négociation ou contrôle logiciel
Taux de transmission	10 Mbps, 100 Mbps, 1 000 Mbps
Prise en charge recto-ver	so Full/Half-duplex
Câble réseau	Cat.5 UTP

Emplacements SFP double vitesse (Port 9, Port 10)

Conformité	IEEE 802.3u 100Base-FX
	IEEE 802.3z 1000Base-SX/LX (mini-GBIC)
Connecteurs	SFP pour émetteurs-récepteurs fibre de type SFP en option
Configuration	Automatique 1000 Mbps, duplex intégral
	Forcé 100Mbps, Full duplex
Taux de transmission	100Mbps et 1000Mbps
Câbles réseau	MMF 50/125 60/125, SMF 9/125
Sécurité oculaire	Conforme à la norme CEI 825

Port de console

Interface	RS-232, type ETTD, Isolation galvanique
Connecteur	RJ-45 blindé

Fonctions de commutation

Tableau des adresses MAC	8 000 entrées
Transfert et filtrage	Non-blocking, full wire speed
Technologie de commutation	Store and forward

Longueur maximale du paquet 9,6 Ko octets

Groupes de multidiffusion IP 8192 pris en charge

Flow controlBase de trame de pause IEEE 802.3x pour un fonctionnement en duplex intégral
Contre-pression pour un fonctionnement half-duplex

Fonction PSE d'alimentation via Ethernet

Ports PSE	Port $1 \sim Port 8$
Broches de sortie de puis	sance Tension d'alimentation positive : broche 4,5
	Tension d'alimentation négative : broche 7,8
Standard	IEEE 802.3at
Classification	Détection PD classe $0 \sim 4$
Livraison de puissance	30W maximum. (par port) à la sortie du port pour une distance Cat.5 jusqu'à 100 m
Tension de sortie	$52V\pm3\%$ en sortie de port
La capacité de puissance	90 W partagés par tous les ports
Protection	Protection contre les sous-tensions
	Protection de survoltage
	Détection de surintensité

Connecteur de bornier

Entrée d'alimentation CC	Bornier euro vissé: contacts DC +/-
Tensions d'entrée de foncti	onnement $+12 \sim +30$ V CC
Consommation d'énergie	14W maximum. @24 V (pleine charge sans sortie PSE)
	113W maximum. @24 V (avec sortie PoE complète)
Sortie relais d'alarme	3 contacts de borne (30VDC/1A maximum ou 120VAC/0,5A maximum)
	Contacts NF : normaux– étayé, alarme – ouvert
	AUCUN contact : normal– ouvert, alarme – étayé
Événements d'alarme	Panne de courant, défaut de liaison de port spécifique (logiciel configuré), OPA

<u>Mécanique</u>

Dimension	140 x 106 x60 millimètres (HxPxL)
Logement	Métal fermé sans ventilateur
Montage	Montage sur rail Din, Montage sur panneau (en option)

Environnemental

Température de fonction	nement	Typique -30 °C~ +60°C*
Température de stockage	-40 °C~ +	-85 °C
Humidité relative	$5~\%\sim90$	% sans condensation

2.Installation

2.1 Contenu du paquet

L'emballage du produit contient :

- L'unité de commutation
- Un CD-ROM de produit
- Un câble de console

2.2 Précautions de sécurité

Pour réduire le risque de blessures corporelles, de choc électrique, d'incendie et de dommages au produit, respectez les précautions suivantes :

	Ne réparez aucun produit sauf comme expliqué dans la documentation de votre système.			
	L'ouverture ou le retrait des couvercles peut vous exposer à un choc électrique.			
	Seul un technicien de service qualifié doit réparer les composants.			
Ń	 Si l'une des conditions suivantes se produit, débranchez le produit de la prise électrique et remplacez la pièce ou contactez votre fournisseur de services qualifié : Le câble d'alimentation, la rallonge ou la fiche est endommagé. Un objet est tombé dans le produit. Le produit a été exposé à l'eau. Le produit est tombé ou est endommagé. Le produit est tombé ou est endommagé. 			
	Ne poussez aucun objet dans les ouvertures de votre système. Cela pourrait provoquer un incendie ou un choc électrique en court-circuitant les composants intérieurs. Faites fonctionner le produit uniquement à partir du type de source d'alimentation externe indiqué sur l'étiquette des caractéristiques électriques. Si vous n'êtes pas sûr du type de source d'alimentation requis, consultez votre fournisseur de services ou votre compagnie d'électricité locale.			

2.3 Montage sur rail DIN

Dans l'emballage du produit, un support sur rail DIN est fourni pour monter le commutateur dans un boîtier industriel sur rail DIN.

Les étapes pour monter le commutateur sur un rail DIN sont :

1. Installez le support de montage sur l'unité de commutation comme indiqué ci-dessous :

- 2. Fixez le support au bord inférieur du rail DIN et poussez l'unité un peu vers le haut jusqu'à ce que le support puisse se fixer sur le bord supérieur du rail DIN.
- 3. Fixez l'unité au rail DIN et assurez-vous qu'elle est solidement montée.

Dimensions:

2.4 Montage sur panneau

Le support de montage sur panneau permet de monter le commutateur sur une surface plane en toute sécurité.

Les étapes de montage sont les suivantes :

1. Installez le support de montage sur l'unité de commutation.

- 2. Vissez le support sur l'unité de commutation.
- 3. Vissez le bloc interrupteur sur un panneau. Les trois emplacements des vis sont indiqués ci-dessous :

Dimensions:

2.5 Application de la puissance

Une sortie de relais d'alarme est fournie pour signaler les événements de défaillance à un système de surveillance de relais d'alarme à distance. La sortie relais est dotée de trois contacts (prend en charge deux types logiques) dans le connecteur du bornier suivant les interfaces Vdc.

Broches d'alimentation du connecteur du bornier

Dim	1	+	Vdc Positif (+) borne d'entrée
r III	2	-	Vdc Négatif (-) borne d'entrée

Spécifications d'entrée Vdc

Plage de tension de	Applications	Puissance de sortie
fonctionnement		au port PSE
	Général	-
$\pm 12 \mathrm{W} \pm 20 \mathrm{WCC}$	PoE	+52 V, 15,4 W
+12 v ~ $+30$ v CC		maximum.
	PoE haute puissance (PoE+)	+52 V, 30 W maximum.

Une fiche de terminal 2P est fournie avec l'interrupteur comme indiqué ci-dessous :

Fils d'alimentation : 24 ~ 12AWG (CEI 0,5~2,5 mm2), 1 mètre maximum.

2.6 Sortie relais d'alarme

Une sortie de relais d'alarme est fournie pour signaler les événements de défaillance à un système de surveillance de relais d'alarme à distance. La sortie relais est dotée de trois contacts (prend en charge deux types logiques) dans le connecteur du bornier suivant les interfaces Vdc.

Broches et logique de sortie du relais d'alarme :

Dim	3	4	4Sortie relais d'alarme, contacts NO (normalement ouverts)NOOuvrir : Normale, Court-circuit : alarme	
r III	NO	NO		
	4	5	Sortie relais d'alarme, contacts NC (normalement fermés)	
Dim	4	5	Sortie relais d'alarme, contacts NC (normalement lermes)	

L'une ou l'autre paire peut être utilisée en fonction des exigences logiques du système de surveillance par relais. Utilisez la fiche de terminal 3P fournie pour le câblage du signal et branchez-la sur les contacts.

Événements d'alarme

- Panne de courant d'entrée
- Liaison de port spécifique vers le bas (les ports spécifiques peuvent être configurés par logiciel.)
- Alarme OPA si la puissance optique est supérieure à un paramètre de limite supérieure ou inférieure à un paramètre de limite inférieure

Remarque : Assurez-vous que la tension appliquée sur les contacts est conforme aux spécifications de 30 V CC/1Amaximum. ou 120VAC/0,5Amaximum.

2.7 Bouton de réinitialisation

Le bouton de réinitialisation est utilisé pour effectuer une réinitialisation du commutateur. Il n'est pas utilisé dans les cas normaux et peut être utilisé à des fins de diagnostic. Si un problème de réseau est suspecté, il est utile d'appuyer sur le bouton pour réinitialiser l'interrupteur sans couper l'alimentation. Vérifiez si le réseau est récupéré.

Le bouton peut également être utilisé pour restaurer les paramètres de configuration du logiciel aux valeurs par défaut d'usine.

Les opérations sont :

Opération	Fonction
Appuyez sur le bouton et relâchez-le pendant le	Réinitialisez et démarrez le commutateur.
fonctionnement de l'interrupteur	Le démarrage prend environ 20 secondes et se termine
	avec toutes les LED allumées en jaune et en vert une
	fois.
Appuyez sur le bouton jusqu'à ce que toutes les LED	Démarrez et restaurez tous les paramètres d'usine par
s'allument en jaune et en vert.	défaut

2.8 Établissement de connexions UTP

Les ports cuivre 10/100/1000 RJ-45 prennent en charge les types de connexion et les distances suivants :

Câbles réseau	
10BASE-T :	2 paires UTP Cat. 3, 4, 5, EIA/TIA-568B 100 ohms
100BASE-TX :	2 paires UTP Cat. 5, EIA/TIA-568B 100 ohms
1000BASE-T :	4 paires UTP Cat. 5 ou supérieur (Cat.5e est recommandé), EIA/TIA-568B 100 ohms
Distance de liaison :	Jusqu'à 100 mètres pour tout ce qui précède

Fonction MDI/MDI-X automatique

Cette fonction permet au port de détecter automatiquement les signaux à paire torsadée et de s'adapter pour former automatiquement une connexion MDI à MDI-X valide avec l'appareil connecté à distance. Peu importe si un câble direct ou un câble croisé est connecté, les ports peuvent détecter automatiquement la paire de réception et se configurer pour correspondre à la règle de connexion MDI à MDI-X. Cela simplifie l'installation du câble.

Fonction d'auto-négociation

Les ports sont dotés d'une fonction de négociation automatique et d'une capacité complète pour prendre en charge la connexion à n'importe quel périphérique Ethernet. Le port effectue automatiquement un processus de négociation pour la configuration de la vitesse et du duplex avec le périphérique connecté à chaque fois qu'une liaison est établie. Si l'appareil connecté est également capable d'auto-négociation, les deux appareils obtiendront la meilleure configuration après le processus de négociation. Si l'appareil connecté est incapable de négocier automatiquement, le commutateur détectera la vitesse et utilisera le mode semi-duplex pour la connexion.

Gestion de la configuration des ports

Pour établir une connexion correcte à un appareil incapable d'auto-négociation, il est suggéré d'utiliser la fonction de contrôle de port via la gestion logicielle pour définir le mode forcé et spécifier la vitesse et le mode duplex qui correspondent à la configuration utilisée par l'appareil connecté.

2.9 Établir une connexion fibre

Les emplacements SFP à double vitesse, les ports 9 et 10, doivent être installés avec un émetteur-récepteur fibre SFP pour établir une connexion fibre.

Types d'émetteurs-récepteurs fibre SFP pris en charge :

Émetteurs-récepteurs SFP 1000BASE-X basés sur 1000 Mbps Émetteurs-récepteurs SFP 100BASE-FX basés sur 100 Mbps

Installation de l'émetteur-récepteur fibre SFP

Pour installer un émetteur-récepteur fibre SFP dans un emplacement SFP, les étapes sont les suivantes :

- 1. Coupez l'alimentation de l'interrupteur.
- 2. Insérez l'émetteur-récepteur fibre SFP dans l'emplacement SFP. Normalement, un support est fourni pour chaque émetteur-récepteur SFP. Tenez le support et insérez-le.
- 3. Jusqu'à ce que l'émetteur-récepteur SFP soit bien en place dans l'emplacement, placez le support en position de verrouillage.

Connexion des câbles à fibres

Les connecteurs LC sont généralement équipés sur la plupart des émetteurs-récepteurs SFP. Identifiez les connecteurs TX et RX avant d'établir une connexion par câble. La figure suivante illustre un exemple de connexion entre deux ports fibre :

Assurez-vous que la règle de connexion RX-à-TX est respectée aux deux extrémités du câble fibre.

Câbles réseau

Multimode (MMF) - 50/125, 62,5/125 Mode unique (SMF) - 9/125

Configuration de la vitesse des ports

Il existe trois options pour configurer la vitesse du port via un logiciel pour les ports SFP 9 et 10.

Les options sont :

Mode Port	Description	
Auto	Détection automatique du type d'émetteur-récepteur SFP installé par lecture des	
	données DDM Émetteur-récepteur 100 Mbps : Non-négociation automatique	
	(forcée), 100 Mbps, full duplex Émetteur-récepteur 1 000 Mbps : Auto-négociation,	
	1 000 Mbps, full duplex	
FDX 100 Mbps	Non-négociation automatique (forcée), 100 Mbps, full duplex	
FDX 1 Gbit/s	Négociation automatique, 1 000 Mbps, full duplex	

2.10 Établissement de connexions PoE PSE

Cette section décrit comment établir une connexion entre un port PSE et un appareil alimenté par PoE (PD). Tous les ports en cuivre sont équipés de la fonction PoE PSE. Les ports sont activés pour fournir de l'énergie avec le signal réseau à un appareil alimenté connecté via un câble Cat.5 ou supérieur. Pour établir une connexion PoE, le PD PoE connecté doit être un appareil conforme à la norme IEEE 802.3at ou IEEE 802.3af pour des raisons de sécurité. Les appareils non conformes ne sont pas pris en charge par le modèle de commutateur PoE.

Pin	Alimentation	Signal LAN 1 Gbit/s	Signal LAN 100 Mbps
	PoE		
1		BI_DB+	RX+
2		BI_DB-	RX-
3		BI_DA+	Émission+
4	Vpo+	BI_DD+	-
5	Vpo+	BI_DD-	-
6		BI_DA-	RX-
7	Vpoe-	BI_DC+	-
8	Vpoe-	BI_DC-	-

Affectations des broches RJ-45 de EPS Port

Les ports PSE sont équipés des capacités suivantes :

- 1. Détection d'un PD conforme à la norme IEEE 802.3af /802.3at.
- 2. Aucune alimentation n'est fournie à un appareil classé PD non conforme à la norme IEEE 802.3af/at.
- 3. Aucune alimentation n'est fournie lorsqu'aucune connexion n'existe sur le port.
- 4. L'alimentation est immédiatement coupée lorsqu'une déconnexion se produit.
- 5. L'alimentation est immédiatement coupée en cas de surcharge.
- 6. L'alimentation est immédiatement coupée en cas de surintensité.
- 7. L'alimentation est immédiatement coupée en cas de court-circuit.

Exemple de connexion :

2.11 Indication LED

LED	Fonction	Couleur	État	Interprétation	
PWR	Pouvoir	Vert	ON	L'alimentation est fournie au commutateur.	
	statut		OFF	L'alimentation n'est pas fournie au	
				commutateur.	
Gestion	Statut de gestion	Vert	OFF	Le switch est en initialisation et diagnostic.	
		Jaune	Clignotant	Initialisation terminée avec erreur de	
				diagnostic ou erreur	
				système détectée pendant le fonctionnement	
				normal	
		Vert	ON	Initialisation terminée sans erreur	
Port1 ~ Port8					
VITESSE_LED	État de la vitesse	Vert	ON	La vitesse est de 1000 Mbps.	
	du port	Jaune	ON	La vitesse est de 10 Mbps ou 100 Mbps.	
			Clignotant	L'alimentation PoE est activée.	
LINK_LED	État du lien de	Vert	ON	La liaison portuaire est établie. (Pas de trafic)	
	port	Vert	Clignotant	La liaison portuaire est active et il y a du	
				trafic.	
			OFF	La liaison du port est en panne.	
Port 9, Port 10					
Vitesse_LED	Vitesse du	Vert	ON	Une liaison 1000 Mbps est établie.	
	port/état de la	Jaune	ON	Une liaison 100 Mbps est établie.	
	liaison		Clignotant	Statut d'activité	
			OFF	La liaison du port est en panne.	

2.12 Établir une connexion à la console

Le connecteur conçu pour le port console est RJ-45.

Attributions des broches

Épingle	Signaux RS-232	ENTRÉE/SORTIE
1, 2, 7, 8	NC	
3	RxD	DANS
6	TxD	DEHORS
4, 5	GND	

Informations sur le débit en bauds

Débit en bauds - 115 200 Bits de données - 8 Parité - Aucune Bit d'arrêt - 1 Contrôle de flux – Aucun

3. Gestion du Switch

Le commutateur fournit les méthodes suivantes pour configurer et surveiller le commutateur comme suit :

- Réalisation d'une gestion Telnet CLI hors bande via le port console
- Gestion intra-bande via telnet CLI sur réseau TCP/IP
- Effectuer une gestion intra-bande via une interface Web sur un réseau TCP/IP
- Gestion SNMP intra-bande sur réseau TCP/IP

3.1 Adresse IP et mot de passe

L'adresse IP est une identification du commutateur dans un réseau TCP/IP. Chaque commutateur doit être désigné par une nouvelle adresse IP unique dans le réseau. Le commutateur est livré avec les paramètres d'usine par défaut suivants pour la gestion des logiciels :

Adresse IP par défaut du switch : 192.168.0.2 / 255.255.255.0

Le commutateur utilise l'authentification locale au lieu de l'authentification RADIUS avec les paramètres d'usine. Nom d'utilisateur fixe : admin Mot de passe par défaut :

Aucun mot de passe n'est requis avec les paramètres d'usine. Cependant, le mot de passe est utilisé pour l'authentification locale lors de l'accès au commutateur via la console, Telnet et l'interface Web HTTP. Pour des raisons de sécurité, il est recommandé de modifier les paramètres par défaut du commutateur avant de le déployer sur votre réseau.

3.2 Configuration de l'adresse IP et du mot de passe via la console et telnet

[Adresse IP] La commande de configuration est dans le groupe de commandes IP.

```
>Configuration IP [<ip_addr>] [<ip_mask>] [<ip_router>] [<vid>]
Paramètres:
<adresse_ip> : adresse IP (abcd)
<masque_ip> : Masque de sous-réseau IPv4 (abcd)
<ip_router> : Routeur IPv4 (abcd)
<vide> : ID VLAN (1-4095)
```

[Adresse IPv6] La commande de configuration est également dans le groupe de commandes IP.

>IP Configuration IPv6 [<ipv6 addr>] [<ipv6 prefix>] [<ipv6 router>]

Paramètres:

<adresse_ipv6></adresse_ipv6>	: L'adresse IPv6 se présente sous forme d'enregistrements de 128 bits représentés sous		
	forme de huit champs comportant jusqu'à quatre chiffres hexadécimaux, séparés par deux		
	points (:).		
<préfixe_ipv6></préfixe_ipv6>	: masque de sous-réseau IPv6		
<routeur_ipv6></routeur_ipv6>	: routeur IPv6		

[Mot de passe] La commande de configuration se trouve également dans le groupe de commandes Sécurité/Commutateur/Utilisateurs.

Configuration des utilisateurs du commutateur de sécurité Les utilisateurs du commutateur de sécurité ajoutent <nom_utilisateur> <mot de passe> <niveau_privilège> Utilisateurs du commutateur de sécurité Supprimer <nom_utilisateur>

Reportez-vous au « Manuel d'utilisation pour la gestion telnet et console ».

3.3 Configuration de l'adresse IP via l'interface Web

Démarrer le navigateur Web

Démarrez votre logiciel de navigation et saisissez l'adresse IP par défaut de l'unité de commutation à laquelle vous souhaitez vous connecter. L'adresse IP est utilisée comme URL permettant au logiciel de navigation de rechercher l'appareil.

URL : http://192.168.0.2/

Connectez-vous pour changer d'unité

Lorsque le logiciel de navigation se connecte avec succès à l'unité de commutation, un écran de connexion s'affiche pour vous permettre de vous connecter à l'appareil comme indiqué à gauche ci-dessous :

?	Please type y	our user name and password.
	Site:	192.168.0.2
	Realm	webstax_domain
	User Name	
	Password	
	☐ Save this	password in your password list

Entrez les valeurs par défaut suivantes dans la page de connexion :

Nom d'utilisateur par défaut : administrateur

Mot de passe par défaut :↓

Aucun mot de passe n'est requis.

Cliquez sur OK pour vous connecter au commutateur.

Page Web après une connexion réussie

Sélectionnez [Configuration] -> [Système] -> [IP] pour configurer l'adresse IP

IP Configuration

	Configured	Current	
DHCP Client		Renew	
IP Address	192.168.0.179	192.168.0.179	
IP Mask	255.255.255.0	255.255.255.0	
IP Router	0.0.0.0	0.0.0.0	
VLAN ID	1	1	
DNS Server	0.0.0.0	0.0.0.0	

IP DNS Proxy Configuration

DNS Proxy

Save Reset

Configuration	Description	
Client DHCP Activer le DHCP client en cochant cette case.		
Adresse IP	Fournit l'adresse IP de cette unité de commutation.	
Masque IP	Fournit le masque IP de cette unité de commutation.	
Routeur IP	Fournit l'adresse IP du routeur par défaut pour cette unité de commutation.	
ID de VLAN	Fournit l'ID du VLAN géré. La plage autorisée va de 1 à 4 095.	
Serveur DNS	Fournit l'adresse IP du serveur DNS dans la notation décimale à points.	
Proxy DNS	Lorsque le proxy DNS est activé, le DUT relaie les demandes DNS au serveur DNS	
	configuré sur le DUT et répond en tant que résolveur DNS à l'appareil client sur le	
	réseau.	
Sauvegarder	Cliquez pour enregistrer les modifications.	
Réinitialiser	Cliquez pour annuler toutes les modifications apportées localement et revenir aux	
	valeurs précédemment enregistrées.	
Renouveler	Cliquez pour renouveler DHCP. Ce bouton n'est disponible que si DHC Pest autorise	

3.4 Configuration pour la gestion SNMP

Le commutateur prend en charge SNMP v1, SNMP v2cet gestion SNMP v3. Assurez-vous que les paramètres associés sont bien configurés pour le commutateur avant de démarrer la gestion SNMP à partir d'un gestionnaire SNMP.

Utilisation de l'interface Telnet

Les commandes suivantes sont disponibles dans le groupe de commandes Telnet SNMP pour configurer les paramètres liés à SNMP :

>Configuration SNMP

>Mode SNMP [activer] désactiver]

>Version SNMP [1|2c|3]

> Communauté de lecture SNMP [<communauté>]

>Communauté d'écriture SNMP [<communauté>]

> Mode Trap SNMP [activer | désactiver]

>Version d'interruption SNMP [1|2c|3]

>Communauté d'interruptions SNMP [<communauté>]

>Destination des interruptions SNMP [<ip_addr_string>]

>Destination IPv6 de l'interruption SNMP [<ipv6_addr>]

> Échec de l'authentification des interruptions SNMP [activer | désactiver]

> Liaison d'interruption SNMP [activer | désactiver]

> Mode d'information sur les interruptions SNMP [activer | désactiver]

>Délai d'expiration des informations d'interruption SNMP [<timeout>]

>Nombre de nouvelles tentatives d'information sur les interruptions SNMP [<nouvelles tentatives>]

> ID du moteur de sécurité de la sonde d'interruption SNMP [activer | désactiver]

>ID du moteur de sécurité des interruptions SNMP [<engineid>]

>Nom de sécurité des interruptions SNMP [<security_name>]

>ID du moteur SNMP [<engineid>]

>Communauté SNMP Ajouter <community> [<ip_addr>] [<ip_mask>]

> Communauté SNMP Supprimer <index>

>Recherche de communauté SNMP [<index>]

>Utilisateur SNMP Ajouter <engineid> <user_name> [<u>MD5|SHA</u>] [<auth_password>] [DES] [<priv_password>]

>Suppression d'utilisateur SNMP <index>

> Clé de modification de l'utilisateur SNMP <engineid> <user_name> <auth_password> [<priv_password>]

>Recherche d'utilisateur SNMP [<index>]

> Groupe SNMP Ajouter <security_model> <security_name> <group_name>

>Suppression du groupe SNMP <index>

- >Recherche de groupe SNMP [<index>]
- >Vue SNMP Ajouter <view_name> [inclus|exclu] <oid_subtree>
- >SNMP View Supprimer <index>
- > Recherche de vue SNMP [<index>]
- >Accès SNMP Ajouter <group_name> <security_model> <security_level> [<read_view_name>]
- [<write_view_name>]
- > Accès SNMP Supprimer < index>
- >Recherche d'accès SNMP [<index>]

Utilisation de l'interface Web

Sélectionnez [Configuration] -> [Sécurité] -> [SNMP] :

Les commandes prennent en charge la configuration pour :

- Configuration système de base pour SNMP v1 et SNMP v2c
- Configuration système de base pour les interruptions SNMP v1, SNMP v2cpiège et piège SNMP v3
- Communautés qui permettent d'accéder à l'agent SNMPv3
- Table utilisateur USM (User-based Security Model) pour SNMPv3
- Table de visualisation VACM (View-based Access Control Model) pour SNMPv3
- Table de groupe pour SNMPv3
- Accède à la table de groupe pour SNMPv3

3.5 MIB SNMP

Le commutateur fournit les MIB SNMP suivantes :

- RFC 1213-MIB II
- RFC 2674 MIB QBridge (MIB VLAN)
- RFC 2819 RMON (Groupes 1, 2. 3 et 9)
- RFC 2863 MIB du groupe d'interface (IF)
- RFC 3411 Cadres de gestion SNMP
- RFC 3414 Modèle de sécurité basé sur l'utilisateur (USM)
- RFC 3415 Modèle de contrôle d'accès basé sur la vue (VACM)
- RFC 3621 MIB Ethernet d'alimentation

- RFC 3635 MIB EtherLike
- RFC 3636 802.3 MIB d'unités de fixation moyennes (MAU)
- RFC 4133 MIB d'entité
- RFC 4188 Pont MIB
- RFC 4668 MIB du client d'authentification RADIUS
- RFC 5519 MIB de découverte d'appartenance à un groupe de multidiffusion (MGMD)
- MIB MSTP IEEE 802.1
- MIB IEEE 802.1AB LLDP
- MIB d'entité d'accès au port (PAE) IEEE 802.1X
- MIB de découverte de point de terminaison de support (MED) TIA 1057 LLDP
- MIB IEEE 802.1-Q-BRIDGE
- MIB SFPDDM privée (lire l'état DDM des ports SFP)
- MIB de redémarrage privé (démarrage à distance via SNMP)
- MIB de mise à jour du micrologiciel TFTP privé (mise à jour du micrologiciel TFTP via SNMP)
- Fonction OPA privée MIB (configuration OPA pour les ports SFP)
- MIB de fonction ALS privée (configuration ALS pour les ports SFP)

Un fichier MIB du produit est également disponible sur le CD du produit pour le logiciel de gestion SNMP.

3.5.1 SNMP Traps

En plus des trappes standard SNMP, l'appareil est équipé de trappes d'alarme privées OPA.

Les pièges sont :

- Piège d'alarme Puissance du port TX inférieure à la valeur minimale
- Piège d'alarme Puissance du port TX supérieure à la valeur maximale
- Piège normal L'alimentation du port TX revient à la normale (supérieure à la valeur minimale)
- Piège normal La puissance du port TX revient à la normale (inférieure à la valeur maximale)

4. Applications en anneau redondantes

4.1 Technologie multi-anneaux automatique

La technologie Auto Multi-Ring a été développée spécialement pour les commutateurs connectés en topologie en anneau qui nécessitent une prise en charge redondante en cas de panne dans l'anneau. Pour les grands réseaux, les connexions à plusieurs anneaux sont très courantes. La mise en œuvre de la technologie Auto Multi-Ring peut prendre en charge plusieurs connexions en anneau au sein d'un commutateur. Il est également capable de fonctionner simultanément avec le support RSTP dans le commutateur.

Certaines informations de base sont :

- Prend en charge jusqu'à cinq sonneries dans un seul commutateur
- Prend en charge jusqu'à 30 commutateurs de membres dans un seul anneau
- Fournit un temps de réponse plus rapide que le protocole RSTP
- Fonctionne avec le protocole RSTP simultanément au sein d'un seul commutateur

La figure suivante illustre une configuration dans laquelle trois anneaux redondants et un crochet d'anneau RSTP sur un wanneau principal redondant. Certains commutateurs prennent en charge simultanément deux anneaux redondants.

La figure suivante montre qu'un commutateur est configuré pour prendre en charge trois anneaux redondants et un anneau RSTP en même temps.

4.2 Applications en anneau redondant avec protocole RSTP standard industriel

Cela peut également être fait pour prendre en charge une connexion en anneau à l'aide de la fonction RSTP standard industrielle et établir un chemin de sauvegarde. En cas de défaillance de la liaison, le chemin de sauvegarde peut se connecter immédiatement pour récupérer le fonctionnement du réseau.